

Human Digital Twin: The developer viewpoint

0

2024 Transforming Care Delivery & AI track

Virtual Human Digital Twins: A key tool for new patterns for prediction and prevention

22 October 2024 | 14.00 CET
2 Online

COMFORTage

#Imagining2029

EHTEL

Digital Twins technology definition

"A human digital twin is a highly detailed virtual model of an individual, designed to mirror their physical and physiological characteristics."

- 1. Data Aggregation and Integration
- 2. Advanced Modeling and Simulation
- 3. Artificial Intelligence and Machine Learning
- 4. Real-Time Data Processing
- 5. Visualization Tools

Twin Health's whole body Digital Twin:

- Nutrition
- Breathing
- □ Activity
- □ Sleep

IIGH

uld

European Virtual Human Twins

- Personalized care
- □ Fundamental AI models
- Health Data space

Siemens Healthineers Digital Twin

- Real World
- □ Test most impactful changes
- □ Implement findings

https://ind.twinhealth.com/app/navigation/twin-works/

https://www.siemens-healthineers.com/gr/services/value-partnerships/asset-center/white-papers-articles/value-of-digital-twin-technology

Research ORFKFFLUTUU

How to develop a Person Digital Twin?

Define Objectives and Scope:

Purpose identification:

- □ Personalized medicine
- Predictive diagnostics
- □ Treatment planning
- Medical device testing

Scope limitation:

- Whole body
- □ Specific organ
- □ Specific system

Knebel, Francisco. (2020). An open Digital Twin framework based on microservices in the cloud. De Benedictis, Alessandra & Mazzocca, Nicola & Somma, Alessandra & Strigaro, Carmine. (2022). Digital Twins in Healthcare: An Architectural Proposal and Its Application in a Social Distancing Case Study. IEEE Journal of Biomedical and Health Informatics. PP. 1-12. 10.1109/JBHI.2022.3205506.

Data Acquisition and Integration

Data sources:

- Medical imaging: MRI, CT scans etc.
- Electronic Health Records (EHRs): Patient history, lab results, clinical notes.
- Wearable devices and IoT sensors: Real-time physiological data like heart rate, blood pressure, and activity levels.
- Genomic and proteomic data: Genetic makeup and protein expressions.

Data Integration:

- □ Interoperability standards: Use HL7 FHIR or DICOM standards for seamless data exchange.
- Data fusion techniques: Combine heterogeneous data sources into a cohesive dataset.

Data Privacy and Security:

- Regulatory compliance: Adhere to EU DATA, GDPR, and other relevant regulations.
- Encryption and anonymization: Protect sensitive information through advanced security measures.

Modelling and simulation

Anatomical modelling:

3D Reconstruction

Mesh generation

Physiological modelling:

- Mathematical models
- □ Multiscale modelling

Software tools:

- Simulations platforms: Utilize tools like ANSYS, Simulia (by Dassault Systèmes), or open-source platforms like Unity.
- Programming languages: Python, MATLAB, or C++ for custom model development.

AI and ML

Data analysis:

- □ Machine Learning Algorithms: Use supervised and unsupervised learning for pattern recognition.
- Deep Learning: Apply neural networks for image recognition and predictive modeling.

Predictive analytics:

- Outcome Prediction: Forecast disease progression or treatment responses.
- Personalized Recommendations: Generate individualized care plans.

Real-time data processing

IoT integration:

- Sensor Networks: Collect continuous data from wearable devices.
- **Edge computing:** Process data locally to reduce latency.

Feedback mechanisms:

- Adaptive Models: Update the digital twin in real-time based on new data.
- Alert Systems: Notify healthcare providers or patients of significant changes.

Prediction, monitoring and personalized recomendations for prevention and relief of dementia and frailty

People suffering from cognitive decline Digital Twin?

COMFORTAGE EU Project overview

COMFORTage strives to establish a pan-European framework for community-based prevention and intervention strategies to facilitate effective lifestyle changes thought the synergies of our Consortium and other stakeholders. Our consortium is compose by:

- 8 Research Institutions/Universities
- 11 Healthcare Organizations & Actors
- 12 Industry and SME partners
- 4 Social Multipliers and Associations
- 4 SSH and Legal Organizations

COMFORTAGE Digital Twin for personalized dementia care

Thank you for your attention...

Stylianos Kokkas, s.kokkas@iti.gr

2024 Transforming Care Delivery & AI track #Imagining2029 Virtual Human Digital Twins: A key tool for new patterns for prediction and prevention (0)22 October 2024 | 14.00 CET
Online

Human Digital Twin: The developer viewpoint

2024 Transforming Care Delivery & AI track

Virtual Human Digital Twins: A key tool for new patterns for prediction and prevention

22 October 2024 | 14.00 CET
2 Online

#Imagining2029

EHTEL

COMFORTage

